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1 Introduction

In this paper, we discuss Thurston’s inequalities for foliations on 3-manifolds, which

are closely related to Thurston-Bennequin’s inequalities for contact structures (on 3-

manifolds). They hold if the structures are convex in some sense.

As the theory of foliations and contact topology have exhibited so many similarities,

Eliashberg and Thurston [ETh] developed the theory of confoliations to clarify the reason

as well as to unify two theories to a certain extent. The relation between the above

inequalities is one of its main subjects.

The main result of this paper is to show the violation of Thurston’s inequality for

spinnable foliations (i.e., a foliation associated with an open book decomposition) under

certain conditions on the monodromy (Theorem c, C), as well as the (non-)vanishing

of the Euler class of the tangent bundle to those foliations (Theorem a, A, Proposition

b, B). These results are stated in §2 and proved in §3. In §4, some application to the

mapping class of the monodromy is given, by passing through the relative inequality from

the absolute one. One of the key ideas in this paper is to introduce the notion of being

(non-)skinny for the monodromy. This notion is described along the statements of the

main results. In the rest of this section we review Thurston’s inequality and some relevant

results concerning monodromy of spinnable foliations.

1.1 Thurston’s Inequality

Let F be a transversely (and therefore also tangentially) oriented codimension one folia-

tion on a closed oriented 3-manifold M . Assume that F has no Reeb components. Then
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for any embedded closed oriented surface Σ of genus g > 0, Thurston showed that the

following inequality holds:

Absolute Thurston’s Inequality (cf. [Th])

|〈e(TF), [Σ]〉| ≤ |χ(Σ)| = 2g − 2,

where e(TF) denotes the Euler class of the 2-plane field TF(⊂ TM) tangent to the

foliation F , [Σ] is the homology class represented by the closed surface Σ and χ(Σ) denotes

the Euler characteristic of Σ.

This inequality can be expressed in terms of the (dual) Thurston norm ‖·‖Th for homology

or ‖ · ‖Th∗ for cohomology as follows (for these norms see [Th]) :

|〈e(TF), z〉| ≤ ‖z‖Th (∀z ∈ H2(M ; Z))

or equivalently

‖e(TF)‖Th∗ ≤ 1.

We have a much more refined version of this inequality, the relative version. Let Σ

be any Seifert surface such that the oriented boundary L = ∂Σ is a positive transverse

link to F w.r.t. its transverse orientation. Take any non-zero section X of the restriction

TF|Σ of TF to Σ and let LX denote the shift of L along X|L. Consider the linking

number lk(L,LX) between L and LX , which is also regarded as the relative Euler number

−〈e(TF), [Σ, L]〉 under a suitable boundary condition. Now we again assume that F has

no Reeb components. Then the relative version holds as follows.

Relative Thurston’s Inequality (cf. [Th]) lk(L,LX) ≤ −χ(Σ).

For the most of foliations (very likely but quite few exceptions), eventually the approval

of the relative inequality is stronger than that of the absolute one (see §4).

As is mentioned above, these inequalities have their complete analogues in contact

topology. Simply replacing TF with an oriented contact plane field ξ in Thurston’s

inequalities, we obtain so called Thurston-Bennequin’s inequalities for oriented contact

structures. In the contact case, because the relative inequality is definitely stronger than

the absolute one, we refer to the relative one simply as Thurston-Bennequin’s inequality.

The first contact structure for which the inequality was proven is the standard contact

structure on S3, which is due to Bennequin [B]. (In this case usually we call the inequality
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and its variants Bennequin’s inequalities.) In general, the inequality holds if and only if

the structure is tight ([B], [E]).

Bennequin first proved relative Thurston’s inequality for the standard Reeb foliation,

in order to deduce his inequality for the standard contact structure on S3. Moreover, as

is mentioned in the next subsection, now we know a lot of other foliations which satisfy

relative Thurston’s inequality, even though they have Reeb components.

We would like to begin the study of Thurston’s inequalities for foliations with Reeb

components in this paper. The main result is the violation of absolute Thurston’s in-

equality for a certain class of foliations. As a consequence, we see that a certain class of

diffeomorphism on a surface is isotopic neither to a product of right-handed Dehn twists

nor to that of left-handed Dehn twists.

1.2 Convergence of Contact Structures to Foliations

Now let us explain our motivation from the contact topological view point.

The phenomena of the convergence of contact structures to foliations as plane fields

were recognized and well studied in the work of confoliations [ETh] (see also [Mi1]).

Especially, if a family of tight contact structures converges to a foliation, (relative as well

as absolute) Thurston’s inequality holds. Here we should remark that the converse does

not hold, i.e., there exists a family of overtwisted contact structures which converges to

the standard Reeb foliation [Mi2].

Thurston and Winkelnkemper [ThW] found a canonical way to construct a contact

structure from a spinnable structure (=an open book decomposition). It is also known

that an oriented closed 3-manifold is the boundary of a compact Stein surface if and

only if it admits a spinnable structure whose monodromy is a product of right-handed

Dehn twists ([LoP]). Combined with this, Mori’s result on Thurston-Winkelnkemper’s

construction implies the following theorem.

Theorem ([LoP], [Mo]) Suppose ξ is obtained from a spinnable structure S on M with

Thurston-Winkelnkemper’s construction. Assume that the monodromy diffeomorphism

of S can be written as a product of only right-handed Dehn twists. Then Thurston-

Bennequin’s inequality holds for ξ.

Also a foliation, called a spinnable foliation, is naturally associated with a spinnable

structure. See the following sections for detailed construction. Thurston-Winkelnkemper’s

contact structure has an isotopic family which converges to this spinnable foliation. As
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he remarked in [Mo], Mori’s result implies that Thurston’s inequalities hold for such a

spinnable foliation even though it admits Reeb components (see §4 below). Therefore,

the following problems naturally arise.

Problems 1) Determine the class of foliations with Reeb components for which absolute

Thurston’s inequality holds.

2) Determine the subclass of 1) for which relative Thurston’s inequality holds.

3) Prove the inequality for the class of 2) directly in the framework of 3-dimensional

topology, like Bennequin’s work [B], without passing through global analytic methods on

4-manifolds (e.g. moduli of pseudo-holomorphic curves, Seiberg-Witten theory etc.).

Our aim in this paper is to study a part of Problem 1) for spinnable foliations.

2 Statement of Results

Let M be a closed oriented 3-manifold. A spinnable structure (or an open book decom-

position) S = (L, F, π) on M is a fibred link L in M with a specified fibration. In

other words, the axis of a spinnable structure is an oriented link L = ∪iLi in M and

the spinnable structure is nothing but a fibration π : M − L → S1 which behaves

nicely near the axis. Precisely, with respect to a framing S1 × D2(� (θ, x)) → N(Li)

of a tubular neighbourhood of Li, the projection π|N(Li) − Li is of the form π(θ, x) =

x/|x| = ω ∈ R/Z. Then a spinnable structure can be expressed by a monodromy dif-

feomorphism ϕ : F → F as M − intN(L) = F × [0, 1]/ϕ where F is the Seifert surface

F = π−1(0)∩ (M − intN(L)) (0 ∈ R/Z), the front surface F ×{1} is attached to the back

surface F × {0} by ϕ : F × {1} → F × {0}, and ϕ is assumed to be supported in intF .

Let Sϕ denote the spinnable structure equipped with a fixed monodromy ϕ.

Here we have to remark that the orientation of the link L determines the orientations

of the normal disk D2, the base space S1(≈ ∂D2) and the fibre F , respectively. Then the

oriented boundary ∂F is parallel to L in the same direction.

2.1 Spinnable Foliations

Given a spinnable structure Sϕ, we construct a depth one foliation Fϕ with Reeb compo-

nents on a tubular neighbourhood R of the axis L and non-compact leaves obtained from

the fibres turbulized along the border leaves ∂R (see Figure 1).
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Figure 1: Spinnable Foliation

Without taking care of orientations, we might have essentially 22�π0(L) possibilities for

Fϕ. Namely, for each component of L, we might have two choices to place the Reeb

component (in which direction the interior leaves are convex) and two choices for the

orientation of its meridian of the component of L along which the fibres spiral into the

border leaf. We fix a unique choice as follows. Suppose that the interior leaves of Fϕ|R are

convex above w.r.t. the orientation of L. Then the outward normal of the border leaves

∂R is positive w.r.t. the L-induced orientation of Fϕ|R. Suppose also that this outward

normal agrees with the transverse orientation of each exterior leaf which is originally a

fibre of the spinnable structure. That is, when the outside leaves spiral around and come

closer to the border leaf, each leaf is supposed to come back slightly below the original

position w.r.t. its transverse orientation. See Figure 1 and the more precise construction

of Fϕ in the next section. We call Fϕ a spinnable foliation associated with Sϕ.

Remark. If we place the Reeb components upside down on R, the inward normal of ∂R

will be positive w.r.t. the L-induced orientation. Then, assuming this inward normal to

be positive w.r.t. the exterior fibration, we have to pick up the opposite direction for the

fibres to spiral into ∂R. Let Gϕ denote the resultant foliation. This second construction is

not different from the first one in the following sense. Keeping the orientation of M fixed,

we reverse the orientation of the link L. Topologically, the fibration π does not change at

all, however, the orientation and the normal orientation of the fibres are reversed. Then,

we get a new spinnable structure with the monodromy −ϕ−1 : −F → −F . If we apply

the first construction to this new spinnable structure S−ϕ−1 , the resultant foliation F−ϕ−1

coincides with the second foliation −Gϕ with reversed orientation. If we were to confuse
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Fϕ with Gϕ = −F−ϕ−1 , the important notions in the present article would not change

at all, e.g., the oriented 3-manifold M , the monodromy ϕ being written as a product

of right-handed Dehn twists, the vanishing of e(TFϕ)(= e(TGϕ)), the (dis-)approval of

absolute Thurston’s inequality for Fϕ etc..

2.2 Results

To state the first result, we assume that the axis of a spinnable structure is connected for a

while. Therefore, as a monodromy diffeomorphism ϕ, we only consider a diffeomorphism

of a once punctured compact oriented surface which fixes the boundary. It is well known

that such a diffeomorphism can be written as a product of Dehn twists up to isotopy.

Figure 2 shows a system of loops C0, C1, . . . , C2g along which Dehn twists τCi
’s generate

the mapping class group of the surface (see [Li] and [H]). This set of generators is called

the Dehn-Lickorish-Humphries generators (D-L-H generators, for short).

C1

C 2
C3

C 0

C4
C5

C2g-1

C 2g

Figure 2: Dehn-Lickorish-Humphries generators

We call a diffeomorphism ψ : F → F DLH-skinny w.r.t. a fixed D-L-H presentation if it

is isotopic to a product of Dehn twists along Ci’s except one curve which is C0, C1 or C3.

Theorem a If the monodromy diffeomorphism ϕ of a spinnable foliation Fϕ admits a

D-L-H presentation w.r.t. which ϕ is DLH-skinny, then the Euler class e(TFϕ) vanishes.

This is a special case of the following generalization where ∂F is not necessarily connected.

The proof is given for Theorem a in the spirit of proving Theorem A.

Theorem A Suppose that the monodromy diffeomorphism ϕ is given as a product
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ϕ =
∏l

k=1 τ
jk
γk

of Dehn twists along simple closed curves γk’s. If γk’s satisfy the following

condition (S), the Euler class e(TFϕ) of the spinnable foliation Fϕ vanishes.

Condition (S) The curves ∪ l
k=1γk may have transverse intersections but has no triple

points, and each connected component of F−∪ l
k=1γk contains at least one component

of ∂F .

We call a diffeomorphism ϕ simply skinny if ϕ satisfies the condition in Theorem A.

The condition (S) implies that one may assume the curves
⋃l
k=1 γk on a fibre F ×{0}

to be Legendrian w.r.t. Thurston-Winkelnkemper’s contact structure associated with Sϕ.
Now, we return to the original setting, namely, F has only one boundary component

and the mapping classes are generated by the D-L-H generators. Then it is clear that if

the Euler class is trivial or of finite order, absolute Thurston’s inequality trivially holds.

Therefore, it is sufficient for our purpose to consider the case where the Euler class is of

infinite order. Further, we restrict ourselves to the following situation. First let us fix a

D-L-H presentation of the mapping class of the monodromy ϕ.

Condition (i) In the fixed D-L-H presentation, the monodromy ϕ is presented as

ϕ = τ j0C0
τ j1C1

τ j3C3
·

l∏
k=4

τ jkk , j0j1j3 �= 0 (τk = τCik
, ik ∈ {5, 6, . . . , 2g}, k = 1, . . . , l).

Namely τC2 and τC4 do not appear and τC0 , τC1 , and τC3 do appear.

Under this condition, the generators τC0 , τC1 and τC3 commute with any other generators.

Then we have the following criterion for the Euler class being of infinite order.

Proposition b Assume that the monodromy ϕ of a spinnable foliation Fϕ satisfies the

conditions (i). Then, the Euler class e(TFϕ) is of infinite order if and only if the following

condition (ii) is satisfied.

Condition (ii)
1

j0
+

1

j1
+

1

j3
= 0.

Theorem c Assume the conditions (i) and (ii) for the monodromy ϕ of a spinnable

foliation Fϕ. Then absolute Thurston’s inequality does not hold, i.e., there exists an

embedded closed oriented surface Σ with |〈e(TFϕ), [Σ]〉| > |χ(Σ)|.
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In order to prove Theorem c, we will find a closed oriented surface in the exterior of the

axis on which the evaluation of the Euler class is not zero (Proposition b). Then one can

perform surgery on this surface to get another closed oriented surface with far less genus,

which shows the violation of Thurston’s inequality.

We can again generalize (the “if” part of) Proposition b and Theorem c as follows.

Here the surface F is allowed to have more than one boundary components.

Condition (I) (1) There exist a compact connected subsurface P of genus 0 in intF

with boundary ∂P =
⋃m
i=1 γi (m ≥ 3) and a disjoint family of simple closed curves ti,i+1

(i = 1, 2, 3, ..., m, where m + 1 is taken as 1) such that the intersection of P and each

ti,i+1 is an arc joining γi and γi+1.

(2) The monodromy ϕ is given as the product ϕ =
∏m

i=1 τ
ji
γi
· ∏l

k=m+1 τ
jk
δk

, where each δk

denotes a simple closed curve disjoint from P ∪ t1,2 ∪ · · · ∪ tm,1 (k = m+ 1, · · · , l).
(3) j1 · · · · · jm �= 0.

(4) The connected component of F−⋃l
k=m+1 δk containing P meets the boundary ∂F , i.e.,

there exists an arc which joins ∂F and P ∪ t1,2 ∪ · · · ∪ tm,1 without meeting
⋃l
k=m+1 δk.

Condition (II)
1

j1
+ · · · + 1

jm
= 0.

Proposition B Under the conditions (1), (2), and (3) of (I), e(TFϕ) is of infinite

order if the condition (II) is satisfied.

Theorem C Under the conditions (I) and (II), absolute Thurston’s inequality does not

hold for Fϕ.

Conditions (i) and (I) are geometric condition to assure that the monodromy is non-

skinny (for a fixed D-L-H presentation). Conditions (ii) and (II) further assures alge-

braically that the Euler class is in fact alive. Then they all together implies the followings.

Corollary d Conditions (i) and (ii) imply that the monodromy is not DLH-skinny for

any D-L-H presentation.

Corollary D The conditions (I) and (II) for the monodromy ϕ implies that ϕ can not

be presented as in Theorem A.
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3 Proofs

Let M be a closed oriented 3-manifold which has a spinnable structure S = (L, F, π) with

monodromy ϕ : F → F and Fϕ its spinnable foliation on M . Basically we give proofs

only for Theorem a, Proposition b, and for Theorem c. Therefore, we assume that L

and ∂F are knots in M . (Once they are understood, we believe it fairly straightforward

to generalize them to those of Theorem A, Proposition B, and of Theorem C.) We fix a

diffeomorphism M− intN(L) ≈Mϕ, where N(L) denotes a closed tubular neighbourhood

of the axis L and Mϕ = F×[0, 1]/ϕ denotes the mapping torus of ϕ , so that the restricted

foliation Fϕ|Mϕ is the (twisted) product foliation {F × {ω};ω ∈ R/Z}.

3.1 Spinnable Foliations around L

We will describe the structure of Fϕ|N(L), the foliation restricted to N(L). Fix a cylin-

drical coordinate (θ, r, ω) ∈ S1
θ × D2(4) for N(L) ≈ S1

θ × D2(4). Here L corresponds

to S1
θ × {(0, ∗)} (i.e., the θ-axis), the pair (r, ω) ∈ [0, 4] × S1

ω is the polar coordinate

for the normal disk of radius 4, both of S1
θ and S1

ω are defined as R/Z, the projection

π|(N(L) − L) corresponds to respecting ω and ignoring (θ, r), and the Reeb component

of Fϕ occupies the closed tubular neighbourhood R = S1
θ ×D2(2) of radius 2. Then take

smooth decreasing functions fi(r) on [0, 5) such that{
fi(r) ≡ ((−1)i + 1) /2 on [0, i− 1]
fi(r) ≡ ((−1)i − 1) /2 on [i, 5)

(i = 1, 2, 3, 4)

and define vector fields

Θ = f1(r)
∂

∂θ
+ f2(r)

∂

∂r
and Ω = f3(r)

∂

∂r
+ f4(r)

∂

∂ω

on S1
θ × (0, 5) × S1

ω ⊃ N(L) − L.

Then, since the bracket [Θ,Ω] vanishes on intN(L)−L, we obtain the foliation Fϕ|N(L)

by integrating TFϕ|(intN(L) − L) = 〈Θ,Ω〉, the oriented span of Θ and Ω. Here the

boundary ∂N(L) and the axis L are perpendicular to Fϕ. Note that we can also define

the foliation Fϕ by using a Pfaff form

α0 =

{
f2(r)dθ − f1(r)f4(r)dr − f3(r)dω on N(L)

dω on Mϕ
,

which satisfies α0 �= 0, α0 ∧ dα0 ≡ 0 and kerα0|(intN(L) − L) = 〈Θ,Ω〉.
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3.2 Proof of Theorem a

Even though, as we will see in the next subsection, Theorem a can be proved in a much

simpler way, a geometric proof which we need to prove Theorem A is given here.

As above, suppose that Fϕ is obtained from a spinnable structure S = (L, F, π) with

monodromy ϕ : F → F . By the assumption, ϕ can be written as the product of Dehn

twists where at least one of τC0 , τC1 and τC3 does not appear at all. Thus we can write

ϕ =
∏l

k=1 τk where τk denotes the Dehn twist along Cik and {i1, . . . , il} does not contain

at least one of 0, 1 and 3. According to this expression, we divide the mapping torus Mϕ

into mapping cylinders of τk’s and consider the “telescope” (F × I1) ∪τ1 · · · ∪τl−1
(F × Il)

where Ik =

[
k − 1

l
,
k

l

]
and ∪τk denotes the operation of attaching F × Ik to F × Ik+1 by

the diffeomorphism τk : F ×
{
k

l

}
→ F ×

{
k

l

}
. Then we have a natural diffeomorphism

Mϕ ≈ (F × I1) ∪τ1 (F × I2) ∪τ2 · · · ∪τl−1
(F × Il)/τl : F × {1} → F × {0}

where τl identifies the two ends F × {1} and F × {0} of the “telescope”.

Take a non-vanishing vector field Xj on the annular support of each Dehn twist τCj

on F which is parallel to the core curve Cj (j = 0, . . . , 2g). Then, on the union Ui =⋃
j �=i supp τCj

⊂ F (i = 0, 1 or 3), we define a non-vanishing vector field X on Ui as the

sum of these vector fields Xj ’s except Xi. See Figure 3 for the flow lines of X in the case

where i = 0, i.e., τC0 does not appear.

C 1 C 2 C 3 C 4 C 5 C 2g-1 C 2g

Figure 3: Flow generated by X0

Since each component of F − Ui contains at least one of the boundary component

of F , the vector field X extends to a non-vanishing vector field on F . Temporarily, we

put this vector field on each fibre F × {ω} (ω ∈ [0, 1]) and then adjust it in each small

neighbourhood of F ×
{
k

l

}
as follows: Let ck denote the core curve ck = Cik ×

{
k

l

}
of
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the Dehn twist τk. Then by a homotopy of vector fields, we deform the vector field X on

each fibre F ×
{
k

l
+ t

}
(−ε < t < ε for a sufficiently small ε > 0) so that the flow lines

are parallel to ck in a small neighbourhood N(ck) in the mapping torus. Note that we can

deform the flow at each “crossroad” so that the resultant flow along one core of the two

crossing annuli is prior to the other. Hence the deformation can be done. See Figure 4.

signal changes

Figure 4: At “crossroads”

Thus we have a vector field at each leaf F ×
{
k

l

}
which is invariant under the action of

the Dehn twist τk. Consequently, we have a non-singular vector field on M − intN(L)

tangent to each Fω = F × {ω}. Let ξ0 denote this vector field.

Note that away from the support of the Dehn twists, especially near ∂F × S1
ω, we can

assume that the vector field ξ0 commutes with
∂

∂ω
. In fact, on a small neighbourhood V of

the boundary ∂(M− intN(L)) = {(θ, 4, ω)} we may put ξ0|V = sin(2πχθ)Θ+cos(2πχθ)Ω

where χ is the Euler characteristic of F .

As we will see soon below, we have to modify ξ0 into ξ1 in the following manner. Fix

a Riemannian metric, so that each tangent plane TpFϕ (p ∈ M − intN(L)) admits an

S1-action which is nothing but the rotation of TpFϕ, respecting the orientation of each

leaves. ξ1 is obtained by rotating ξ0|Fω by −2πω in the above sense, i.e.,

ξ1|V = sin 2π(ω + χθ)Θ + cos 2π(ω + χθ)Ω.

Next let us consider a vector field ξ2 on R tangent to Fϕ|R. Define ξ2|∂R as

ξ2|∂R = − sin 2π(ω + χθ)
∂

∂θ
+ cos 2π(ω + χθ)

∂

∂ω
.

Remark that Θ|∂R = − ∂

∂θ
and Ω|∂R =

∂

∂ω
. Because ξ2|∂R rotates minus once along the

meridian S1
ω × {θ} × {1}, it naturally extends to the whole of R as a non-singular vector

field ξ2 (see Figure 5).
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Figure 5: The flow induced on the border leaf for χ = −3.

ω

θ

For example, taking a positive smooth function g(r) on (0, 3) such that 2πrg(r) ≡ 1 on

(0, 1] and g(r) ≡ 1 on [2, 3), we may put

ξ2|(R− L) = sin 2π(ω + χθ)Θ + g(r) cos 2π(ω + χθ)Ω.

Actually, setting x = r cos 2πω and y = r sin 2πω on the tubular neighbourhood W =

S1
θ ×D2(1) of L of radius 1, we can rewrite ξ2 on W as

ξ2|W = sin 2πχθ
∂

∂x
+ cos 2πχθ

∂

∂y
+ f1(r) sin 2π(ω + χθ)

∂

∂θ
( �= 0).

Finally we fill up N(L)−intR with ξ3 = sin 2π(ω+χθ)Θ+cos 2π(ω+χθ)Ω. Apparently,

the vector fields ξ1, ξ2 and ξ3 match up to each other and define a non-singular vector field

on whole of M which is tangent to Fϕ.

3.3 Computation of e(TF)

In order to make the arguments in the previous section clearer as well as to prepare for

the following sections, let us consider the Poincaré dual PD[e(TF)] ∈ H1(M ; Z) to the

Euler class. Morita studied this class from the view point of crossed homomorphism on

the mapping class groups (Proposition 4.1 in [M1]. See also Proposition 5.3 in [M2] as

well). Here we give it a more elementary description directly related to Dehn twist.

Fix a vector field X tangent to the foliation F . Then, PD[e(TF)] is localized to a

neighbourhood of the set S(X) of singular points of the vector field X.

For a simple closed oriented curve C on a leaf FC with its tubular neighbourhoodN(C)

in M , let l ⊂ ∂N(C) ∩ FC and m be its leaf longitude and meridian. Then performing a

Dehn surgery on C which attaches a new meridian disk along j · l−m (j ∈ Z) is equivalent

to cutting M along an annular neighbourhood A(C) of C in FC and pasting the downside

A− back to the upside A+ (w.r.t. the transverse orientation of F) by a diffeomorphism

12



ψ : A− → A+, which is nothing but the j-th power τ jC of the right-handed Dehn twist

along C on A(C). Let Mψ and Fψ denote the resultant manifold and foliation respectively.

Assume S(X)∩N(C) = ∅. Then we can define the rotation number ρ(C,X) of X|C w.r.t.

the tangent vector field Ċ and regard the original Poincaré dual PD[e(TF)] as an element

of the new homology H1(Mψ; Z).

Lemma 1 Under the above situation, we have

PD[e(TFψ)] = PD[e(TF)] − jρ(C,X) · [l] ∈ H1(Mψ; Z).

Moreover, if ρ(C,X) = 0, the vector field X naturally induces a new vector field Xψ on

Mψ without new singularities.

For the proof, see the next subsection. Now, let us explain the proof of Theorem a by

this lemma. The construction of the vector field ξ0 around the support of ϕ is explained

by the latter half of the lemma. Then, in anyway, Lemma 1 implies that we can construct

a vector field whose singular set is contained in a neighbourhood of the (connected) toral

leaf ∂R. Then the meridian component of PD[e(TFϕ)] ∈ H1(N(L) − intR; Z) ≈ Z
2 is

killed by the meridian disk of R in H1(R; Z) and the longitudinal component is killed by

Fω in H1(M−intN(L)). We could choose any integer as χ in the construction of the vector

field ξ2 in the previous subsection. This fact corresponds to the first annihilation above.

We could resolve the discordance of ξ0 and ξ3 by modifying ξ0 into ξ1. This corresponds

to the second.

3.4 Proof of Proposition b

As is mentioned above, a mapping torus of a Dehn twist on a surface can be considered

as the result of a Dehn surgery on the core curve of the Dehn twist in the surface times

S1. Thus we have another description, the surgery description of (M,Fϕ). Suppose that

M has a spinnable structure with the fibration M − L → S1 and its monodromy ϕ can

be presented as ϕ =
∏l

k=1 τ
jk
k , where τk is the Dehn twist along Cik . Set

M ′ = (F × S1) ∪ (S1 ×D2)

where the solid torus S1 ×D2 � (θ, r, ω) is attached to the mapping torus of the identity

F × [0, 1]/idF = F × S1 by the natural identification S1 × ∂D2 ≈ S1
θ × S1

ω ≈ ∂F × S1.

The (non-twisted) product foliation {F ×{ω};ω ∈ R/Z} extends to the trivial spinnable

13



foliation FidF
. Then (M,Fϕ) is the result of the Dehn surgeries on Cik ×

{
k

l

}
(k =

1, 2, . . . , l) which attach new meridian disks along jk · lk−mk where lk and mk denote the

leaf longitude and meridian of each Cik w.r.t. the leaf F ×
{
k

l

}
.

Now, we present (the Poincaré dual to) the Euler class e(TFϕ) for (M, Fϕ). We orient

the loops Ci (i = 1, 2, . . . , 2g) as they are depicted in Figure 6.

C1

C 2 C3

C4 C5

C2g-1

C 2g

Figure 6: A basis for H1(F ; Z).

Then we orient C0 so that [C0] + [C1] + [C3] = 0. For a non-vanishing vector field X

tangent to the product foliation {F × {ω}} on F × S1 and a smooth loop C on F , let

ρ(C,X) denote the rotation number of X|C w.r.t. the tangent vector field Ċ.

Lemma 2 Suppose that the monodromy ϕ is presented as ϕ =
∏l

k=1 τ
jk
k where τk =

τCik
(ik ∈ {0, 1, . . . , 2g}, jk ∈ Z − {0}, k = 1, 2, . . . , l). Then we have

PD[e(TFϕ)] = −
l∑

k=1

jk · ρ(Cik , X) ·
[
Cik ×

{
k

l

}]
∈ H1(M ;Z).

Proof. It is clear that TFϕ is trivial onM−
l⋃

k=1

N

(
Cik ×

{
k

l

})
. Let Dk be the meridian

disk of the tubular neighbourhood of Cik ×
{
k

l

}
. Then the boundary curve ∂Dk goes

around Cik direction ji times. A non-vanishing vector field X on ∂Dk is a non-zero section

induced from the outside of Dk and therefore −jk · ρ(Cik , X) is the evaluation of e(TFϕ)

at Dk. This implies Lemma 2.
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Now we proceed to the proof of Proposition b. The monodromy ϕ is presented as

ϕ = τ j0C0
τ j1C1

τ j3C3
·

l∏
k=4

τ jkk (τk = τCik
, ik ∈ {5, 6, . . . , 2g}, k = 4, . . . , l)

where τC2 and τC4 do not appear. Then let P denote the subsurface of F which is bounded

positively by C0 ∪ C1 ∪ C3. P is homeomorphic to a 3-punctured sphere and inherits the

orientation from F . We will define three tori T01, T13 and T30 in M ′ as follows. Let t01

be a loop in F ⊂ M ′ which intersects with C0 and C1 once respectively and does not

intersect with the other curves Ci (i �= 0, 1). See Figure 7.

C1

C 0

C5 C2g-1
C 2g

t13

C33

t30

t01

Figure 7: The section of the tori at F .

Then rotating t01 around L over the base S1
ω, we have a torus T01 in M ′ with T01∩F = t01.

Similarly, we have other two tori T13 and T30 in M ′. We give an orientation on Tpq so that

the normal orientation of Tpq coincides with the orientation of Cq (see Figure 7).

On the surgery description, we can assume that the Dehn surgery on C0, C1 and C3 are

performed on the same level F ×{0}. Remove the interior of the tubular neighbourhoods

of C0, C1 and C3 in M ′ and denote the resultant 3-manifold by M ′′. By the abuse of

language, we also denote Tij ∩M ′′ by Tij . Take n copies of P , m01 copies of T01, m13

copies of T13 and m30 copies of T30 and perform a double curve surgery on them to obtain

a surface in M ′′. See Figure 8. Here n and mpq’s are integers and their signs mean the

orientations of the surfaces.

Then if the following equation has an integral solution for some non-zero integer n, then

the boundary of the resultant surface can be capped with meridian disks of the tubular

neighbourhoods of C0, C1 and C3 in M :⎛
⎝ n

n
n

⎞
⎠ =

⎛
⎝ 0 j0 −j0

−j1 0 j1
j3 −j3 0

⎞
⎠

⎛
⎝ m13

m30

m01

⎞
⎠ . (1)
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Figure 8: The double curve surgery.

Simple calculation shows that the equation (1) has an integral solution if and only if
1

j0
+

1

j1
+

1

j3
= 0 and n is a common multiple of j0, j1, and j3. Hence the condition (ii)

assures the existence of such a closed surface in M that algebraically intersects with C0, C1

and C3. This implies that the Euler class e(TFϕ) is of infinite order. Especially if we take

n to be ñ = lcm(j0, j1) (= lcm(j1, j3) = lcm(j3, j0) > 0), the surface is connected.

To show the converse, we first calculate the Euler class precisely. We can choose the

vector field X so that the Dehn twist τCi
preserves X for i ≥ 5. Then ρ(Ci, X) = 0 for

i ≥ 5 and therefore

PD[e(TFϕ)] = −(j0ρ0[C0] + j1ρ1[C1] + j3ρ3[C3]) (ρi = ρ(Ci, X), i = 0, 1, 3).

Moreover it is easy to see that we can assume ρ1 = 1(= −χ(P )), ρ0 = ρ3 = 0 by choosing

a suitable vector field X. Consequently we have PD[e(TFϕ)] = −j1[C1]. Let J denote

the sum j1j3 + j3j0 + j0j1. Clearly,
1

j0
+

1

j1
+

1

j3
= 0 if and only if J = 0 and j0j1j3 �= 0.

Thus the following lemma implies the converse.

Lemma 3 The homology class J · PD[e(TFϕ)] vanishes in H1(M ; Z).

Proof. Consider the following exact sequence:

H1(F ; Z)
ϕ∗−id−→ H1(F ; Z) → H1(M ; Z).

We take [Ci], i = 1, 2, 3, 5, . . . , 2g and [Ĉ4] as another basis for H1(F ; Z), where Ĉ4 is

the oriented loop depicted in Figure 9.
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C1
C5 C2g-1

C 2gC33

C2 C4
^

Figure 9: Another basis for H1(F ; Z).

Note that Ĉ4 is isotopic to T30 and [Ĉ4] =
∑g

i=2[C2i]. Let G denote the subgroup of

H1(F ; Z) generated by [C1], [C2], [C3] and [Ĉ4]. Then since neither of τC2 nor τC4 appears

in ϕ, G is invariant by ϕ∗. We restrict ϕ∗ to G. Then ϕ∗|G is represented as

ϕ∗|G =

⎛
⎜⎜⎝

1 j1 0 j0
0 1 0 0
0 −j3 1 j0 + j3
0 0 0 1

⎞
⎟⎟⎠ .

Since PD[e(TFϕ)] = −j1[C1] and the exactness of the above sequence, it is sufficient to

show that there exists (x1, x2, x3, x4) ∈ Z
4 with

J · PD[e(TFϕ)] = J

⎛
⎜⎜⎝

−j1
0
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 j1 0 j0
0 0 0 0
0 −j3 0 j0 + j3
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ ,

that is, to show that there exists (x2, x4) ∈ Z
2 with

−j1J
(

1
0

)
=

(
j1 j0

−j3 j0 + j3

) (
x2

x4

)
.

Now the determinant of the matrix A =

(
j1 j0

−j3 j0 + j3

)
is just J . Therefore if J �= 0,

then the inverse matrix A−1 can be written as
1

J
Ã, where Ã is a 2 × 2 integer matrix.

Hence −j1Ã
(

1
0

)
is the desired integer vector. This implies Lemma 3.

Consequently the proof of Proposition b is completed.

3.5 Proof of Theorem c

Under the hypothesis of the theorem, Proposition b implies
1

j0
+

1

j1
+

1

j3
= 0. Moreover,

we can construct a closed surface whose evaluation with e(TFϕ) is non-zero. Suppose that
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such a closed surface S is constructed with ñ copies of P , m13 copies of T13, m30 copies of

T30 and m01 copies of T01 as in the proof of Proposition b. Then after performing double

curve surgery on (∪ñP )∪ (∪m13T13)∪ (∪m30T30)∪ (∪m01T01), the number of the boundary

components of the resultant surface b is equal to the sum
ñ

|j0| +
ñ

|j1| +
ñ

|j3| , because the

equation ñ = j0m30 − j0m01, for example, implies the resultant curve on the boundary

component corresponding to C0 is
ñ

j0
= m30−m01 copies of the loop of the slope j0. Then

the Euler characteristic χ(S) is calculated as follows.

Claim 1. χ(S) = −2m+ ñχ(P ) + b, where m = |m13| + |m30| + |m01|.

Proof. The Euler characteristic χ(S) is equal to that of the disjoint union of the material

surfaces, i.e., |m13| + |m30| + |m01| copies of a twice punctured torus, ñ copies of a 3-

punctured sphere, and b copies of a disk. This implies Claim 1.

On the other hand, the Euler number of TFϕ|S is calculated as follows.

Claim 2. 〈e(TFϕ), [S]〉 = −ñ(= ñχ(P )).

Proof. Since the Euler class can be written as PD[e(TFϕ)] = −j1[C1], we have

〈e(TFϕ), [S]〉 = 〈−j1[C1], [S]〉
= −j1(m01 −m13)

= −j1
(
ñ

j1

)
= −ñ,

as is desired.

Now, by Claims 1 and 2, the equality |〈e(TFϕ), [S]〉| = −χ(S) holds if and only if

b = 2m. As is noted above, the number b of the boundary components of S is equal to

the sum
ñ

|j0| +
ñ

|j1| +
ñ

|j3| and is independent from mpq, mqr and mrp.

Claim 3. The inequality b ≤ 2m holds where the equality b = 2m actually holds for

the minimum possible m.

Proof. Since
1

j0
+

1

j1
+

1

j3
= 0, there is an even permutation (p, q, r) of (0, 1, 3) such
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that
1

|jr| =
1

|jp| +
1

|jq| . For the equation (1) with n = ñ, we have the general solution

(mpq, mqr, mrp) =

(
k, − ñ

jq
+ k,

ñ

jp
+ k

)
where k is any integer. Then we have

2m = 2

(
|k| +

∣∣∣∣− ñ

jq
+ k

∣∣∣∣ +

∣∣∣∣ ñjp + k

∣∣∣∣
)

≥ 2

(
ñ

|jq| +
ñ

|jp|
)

= ñ

(
1

|jq| +
1

|jp| +
1

|jr|
)

= b

where the equality holds when k = 0. This implies Claim 3.

Claim 3 implies that 〈e(TFϕ), [S]〉 = −χ(S) holds for the minimum possible m. On

F = F ×{0} ⊂Mϕ, we can find an arc a which connects a point of t01 and a point of ∂F

and int a does not intersect with Ci’s nor tpq’s. See Figure 10.

C1
C3

C 0

C5 C2g-1
C 2g

a

t01

Figure 10: The arc connecting t01 and ∂F .

Then, rotating a around the base S1
ω, we have an annulus A in M such that ∂A =

(A∩ T01) � (A∩ ∂Mϕ). By the construction, the loop A∩ ∂Mϕ is the meridian loop ∂D2

of N(L) so that the surface A ∪D2 is a compressing disk of the surface S. Thus we can

perform a surgery on S along this compressing disk to obtain a new closed connected

surface S ′. Then we have χ(S) < χ(S ′) ≤ 0 and [S] = [S ′] ∈ H2(M ; Z). Finally, we have

〈e(TFϕ), [S ′]〉 = 〈e(TFϕ), [S]〉
= −χ(S)

> −χ(S ′) .
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Thus the absolute inequality does not hold. This completes the proof of Theorem c.

4 The Relative Inequality

If relative Thurston-Bennequin’s inequality for a contact structure holds, then so does the

absolute one. As to Thurston’s inequality for foliations, it is not the case in general.

In our situation, the violation of the absolute inequality in fact implies that of the

relative one. In this section this is explained in §4.2 in a direct and geometric manner and

also in §4.1 by more general argument for spinnable foliations. It yields an application on

the mapping class of the monodromy, which is given in the final subsection.

4.1 Bennequin’s Lemma

Proposition 4 For spinnable foliations relative Thurston’s inequality is stronger than

the absolute one.

In this subsection we explain this Proposition. The basic idea is to pass from foliations

to contact structures. Let {ξi} be a sequence of contact structures converging to a foliation

F as oriented plane fields. Therefore ξi’s are isomorphic to TF as an oriented plane

bundle, so that their Euler classes coincide. Therefore absolute Thurston’s inequality

holds if and only if absolute Thurston-Bennequin’s inequality holds for ξi’s.

On the other hand, as to relative inequalities, the situation is more delicate. If ξi’s

satisfy relative Thurston-Bennequin’s inequality, relative Thurston’s inequality holds for F
as well, because any transverse knot to F is also transverse to ξi’s for large i’s. However,

even if we take i large enough, it is not true in general that transverse knot to ξi is

transverse to F , and in fact, there exists a sequence of over twisted contact structures

converging to a foliation which satisfies relative Thurston’s inequality. For spinnable

foliations, the situation is better. First, we know a good family of contact structures for

a spinnable foliations.

Lemma 5([Mo]) Thurston-Winkelnkemper’s contact structure associated with a spinnable

structure Sϕ has an isotopic family which converges to the spinnable foliation Fϕ.

Proof. Recall that Thurston-Winkelnkemper’s contact structure for the spinnable

structure on M = N(L) ∪ F × [0, 1]/ϕ is the kernel of a contact 1-form α1 with

dα1|intF × {ω} > 0 (∀ω ∈ R/Z) and α1|N(L) = dθ + (r2/4)dω
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where (θ, r, ω) is the coordinate on N(L) ≈ S1
θ × D2(4) described in §3. Then, for the

Pfaff form α0 in §3, we see that the family {(1 − t)α0 + tα1; t ∈ (0, 1]} of contact forms

defines an isotopic family of contact structures from Gray’s stability theorem. This family

of contact structures actually converges to the spinnable foliation.

Here is the key step of this argument.

Bennequin’s Lemma Any positive transverse link of Thurston-Winkelnkemper’s con-

tact structure associated with a given spinnable structure Sϕ is isotopic through a family

of transverse links to one in the mapping torus F × [0, 1]/ϕ which is positively transverse

to each fibre F × {ω} (ω ∈ R/Z).

Now, let us assume that F satisfies the relative inequality. Then, ξi’s also satisfy the

relative inequality and hence the absolute one as well. This implies F satisfies absolute

Thurston’s inequality.

Bennequin’s Lemma is proved essentially in the same way as in his original work (the

proof of Theorem 8 in [B]). The detail will be given in a forthcoming paper.

Remark. Let us take a Reeb component and another copy of it with up side down.

They are glued together along the toral boundary to be a foliation F on S2×S1. It is easy

to see that there is no Seifert surface with positive transverse boundary and therefore the

relative inequality holds, while absolute one does not hold since PD(e(TF)) = ±2[S1].

The same situation also happens for the product foliation Fζ = {S2 ×∗} on S2 ×S1. We

know of essentially no other such examples and believe that in fact there are very few.

Practically it seems not hard to deduce the absolute inequality from the relative one in

each individual cases.

4.2 Closed Surface S and Seifert Surface Σ

In order to construct a Seifert surface Σ which violates the relative inequality, we first

describe the closed surface S more precisely in the proof of Theorem c. Take an even

permutation (p, q, r) of (0, 1, 3) such that
1

|jr| =
1

|jp| +
1

|jq| as in the proof of Claim 3.

Then the special solution

(mpq, mqr, mrp) =

(
0, − ñ

jq
,
ñ

jp

)

for the equation (1) roughly determines the surface S.
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On P × R/Z ⊂ M , we give S a detailed description as follows. Let us regard P

as a branched double covering over an annulus A = R/Z × [0, 1] with the branch point

(0, 1/2) ∈ A and H be the singular foliation on P , which is given as the pull-back of the

simple foliation on A defined by the first projection A→ R/Z. Let � : P → R/Z denote

this projection composed with the branched covering. They are depicted in Figure 11,

where the outer boundary of P presents Cr and the left and the right inner boundaries

present Cq and Cp respectively. The surface P is divided into two pieces Pq and Pp as in

the figure and �i : Pi → R/Z ≈ Ci denotes the restriction of � to Pi (i = q, p).

Figure 11: The singular foliation H on P = Pq ∪ Pp.

branched double covering P Cr Pq Pp

A Cq Cp

Then we define the surface S by setting for each ω ∈ R/Z

S ∩ (P × {ω}) =

⎛
⎝ ⋃
u∈µq(ω)

�−1
q (u)

⎞
⎠ ∪

⎛
⎝ ⋃
v∈µp(ω)

�−1
p (−v)

⎞
⎠ × {ω}

where µi(ω) denotes the set {u ∈ R/Z; u ≡ jiω(mod ji/ñ)} (i = q, p). Then S∩(P×R/Z)

has ñ positive hyperbolic tangent points to the foliation Fϕ. The surface S coincides with

(∪mqrTqr) ∪ (∪mrpTrp) outside P × R/Z and has no other tangencies. Therefore we see

χ(S) = −ñ and 〈e(TFϕ), [S]〉 = −ñ by summing up the indices or the signed indices

of tangencies respectively. Figure 12 shows the surface S ∩ (P × R/Z) for (j0, j1, j3) =

(−3,−6, 2) and ñ = lcm(−3,−6) = 6. Here (m01, m13, m30) = (0, 1,−2) determines S.

The closed oriented surface S has six positive hyperbolic tangent points to Fϕ and we see

χ(S) = −6 (genus(S) = 4) and 〈e(TFϕ), [S]〉 = −6.

Now we modify the surface S into a Seifert surface Σ by using compression disks which

are transverse to the axis of Sϕ. Like the arc a on F used in the proof of Theorem c, which

connects a point on the boundary ∂F and a point of the subset P ∪ tqr ∪ trp ∪ tpq(⊂ F )
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Figure 12: The surface S.

without touching the support of ϕ, there also exist a mutually disjoint pair of similar

arcs a1 and a2 with terminal points on tqr and trp respectively. Then the arcs a1 and

a2 trace collars of two compression disks D1 and D2 of S on M . Perform a surgery

on S along D1 and D2 disks to obtain a closed connected surface S ′′. The surface S ′′

contains two copies with opposite orientations of each of D1 and D2. Therefore it has

two positive elliptic tangent points and two negative elliptic ones other than ñ positive

hyperbolic tangencies. Choose the negative copy of D1 in S ′′ and remove its interior from

S ′′. Then, we obtain a Seifert surface Σ. §2.1 and especially Figure 1 tells its boundary

L = ∂Σ = −∂(removed disc) is positively transverse to Fϕ. Then we see that χ(Σ) = 3−ñ
and −lk(L,LX) = 1 − ñ by summing up the indices and the signed indices respectively.

Thus the Seifert surface Σ violates lk(L,LX) ≤ −χ(Σ).

4.3 A Result on Mapping Classes

The violation of relative Thurston’s inequality for the above spinnable structure Fϕ implies

the overtwistedness of Thurston-Winkelnkemper’s contact structure associated with the

same spinnable structure Sϕ. Moreover, as is mentioned in §1, this implies that the
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monodromy ϕ is never isotopic to a product of only right-handed Dehn twists. Note that

the conditions (i) and (ii) for Sϕ are also satisfied for the spinnable structure Sϕ−1 on

−M = N(L) ∪ F × [0, 1]/ϕ−1. Thus relative Thurston’s inequality does not hold for the

spinnable foliation Fϕ−1 on −M , which is different from Gϕ described in Remark in §2.1.

This implies that the inverse diffeomorphism ϕ−1 is not isotopic to a product of right-

handed Dehn-twists. Therefore the original monodromy ϕ is not isotopic to a product of

left-handed Dehn twists. Thus we obtain a result on the mapping classes:

Corollary e If a spinnable structure Sϕ satisfies the conditions (i) and (ii), the mon-

odromy map ϕ is isotopic neither to a product of right-handed Dehn-twists nor to a product

of left-handed Dehn-twists.

Note that if we compose ϕ with a large power of right-handed (resp. left-handed) Dehn

twist along a parallel loop of ∂F then we obtain a diffeomorphism isotopic to a product of

right-handed (resp. left-handed) Dehn-twists. The existence of the arc a in the proof of

Theorem c or in the condition (4) of (II) in §2 forbids adding extra twists along a parallel

loop of ∂F .
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83–161.

[E] Y. Eliashberg: Contact 3-manifolds twenty years since J. Martinet’s work, Ann.

Inst. Fourier, Grenoble, 42-1-2 (1991), 165–192.

[ETh] Y. Eliashberg and W. Thurston: Confoliations, A.M.S. University Lecture Series,

13 (1998).

[H] S. Humphries: Generators for the mapping class group, Lecture Notes in Math.

722, Springer, Berlin, (1979), 44–47.

[Li] W. B. R. Lickorish: A finite set of generators for the homeotopy group of a 2-

manifold (corrigendum), Proc. Camb. Phil. Soc. 62 (1966), 679–681.

[LoP] A. Loi and R. Piergallini: Compact Stein surfaces with boundary as branched

covers of B4, Invent. Math. 143(2001), 325-348.

24



[Mi1] Y. Mitsumatsu: Anosov flows and non-Stein symplectic manifolds, Ann. l’Inst.

Fourier, 45-5 (1995), 1407–1421.

[Mi2] Y. Mitsumatsu: Foliations and contact structures on 3-manifolds, Proceedings of

FOLIATIONS: GEOMETRY AND DYNAMICS held in Warsaw, 2000, ed. by P.

Walczak et al, World Scientific, Singapore, (2002), 75–125.

[Mo] A. Mori: A note on Thurston-Winkelnkemper’s construction of contact forms on

3-manifolds, Osaka J. Math. 39 (2002), no. 1, 1–11.

[M1] Sh. Morita: Families of Jacobian manifolds and characteristic classes of surface

bundles. II, Math. Proc. Camb. Phil. Soc., 105 (1989), 79–101.

[M2] Sh. Morita: Casson invariant, signature defect of framed manifolds and the sec-

ondary characteristic classes of surface bundles, J. Diff. Geom., 47 (1997), 560–

599.

[Th] W. Thurston: Norm on the homology of 3-manifolds, Memoirs of the AMS, 339

(1986), 99–130.

[ThW] W. Thurston and E. Winkelnkemper: On the existence of contact forms, Proc.

A.M.S., 52 (1975), 345–347.

Hiroki KODAMA
Graduate School of Mathematical Sciences, University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
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